
The Syrinx Spoken Language System

to appear in the

International Journal of Speech Technology

vol 5(1), January 2002

Dominique Estival

sayso!

Level 8, 32 Arthur St

North Sydney 2060

AUSTRALIA

e-mail: Dominique.Estival@ sayso.com

phone: +61-02-9779-5555

fax: +61-02-9779-5477

Dominique Estival

Syrinx Speech Systems

Abstract

This paper describes the Syrinx Spoken Language Sys tem (Sylan), an automated dialogue system

that is fully integrated with the Syrinx Large Voca bulary Speech Recogniser (Sycon) into the Syrinx

SpeechMaster platform. This platform combines speech recognit ion, natural language processing,

dialogue management, telephony and database integra tion into a robust and flexible Voice User

Interface that permits the deployment of natural la nguage dialogue systems in automated call

centres. We first describe the architecture of Sylan which, being modular, allows us to build a

system whose domain-independent components are reus able from application to application. We

then present those components from the point of vie w of application developers, describing the data

structures used by the system and the utilities to build them. The two prototypes which have already

been developed using Sylan are briefly presented, and we conclude by drawing the lessons learned

along the way and pointing to further research dire ctions.

Keywords

automated dialogue system, spoken language processi ng, modular architecture

1. Introduction

There are severe constraints on automated call cent re applications: unlike research systems

which can be limited to a small domain, or converse ly can be allowed greater freedom because they

can afford to fail, commercial systems to be used a t a call centre must work in real-time over the

public telephone system and must be usable by the g eneral public. Thus, by definition, they require

a speaker-independent speech recognition system, an d they must be extremely robust, allowing a

wide range of users to access the system and succes sfully complete calls and transactions with it

(Glass, 1999). To be commercially viable, the syst em also must be easily portable to different

environments, and it must allow quick development o f new applications in different domains. Due to

these constraints, current commercial systems are u sually limited to single token (this may be a

phrasal token, rather than a single word) recogniti on and fairly directed dialogue structures.

Sylan is an automated dialogue system that was recently developed at Syrinx Speech

Systems under the Natural Language Processing Proje ct1. The aim was to confront these issues

and to produce a framework upon which to build appl ications where the structure of the dialogue can

be less constrained, allowing users to input more n atural, multi-token utterances that are interpreted

and processed in several stages. This framework wa s developed independently of any particular

speech recogniser and can be used with other off-th e-shelf speech recognisers, as well as with

textual input. However, it is fully integrated wit h the latest Syrinx large vocabulary speech recogni ser

(Sycon3), and together these components have been integrat ed into the SpeechMaster platform.

The SpeechMaster system combines speech recognition, natural langua ge processing,

dialogue management, telephony and database integra tion. It provides a software architecture and

an environment for the creation of dialogue systems in natural spoken language for automated call

centres. The general system architecture we adopte d is described in section 2. This architecture,

where a dialogue module acts as the central compone nt directing the conversation flow, deciding

which actions should be taken and what responses sh ould be generated on the basis of the

interpretation of the input utterance into a set of attribute-value pairs, is similar in design to the

familiar one presented by other researchers in simi lar projects (see Bernsen, Dybkjaer and Dybkjaer,

1998).

In section 3, we present the different components f rom the point of view of the application

developers, in particular the Dialogue Flow Control ler, the Analysis module and the Generator, and

we also describe some of the tools and utilities ne eded for application development. We briefly

describe in section 4 the development methodology f ollowed and the evaluation metrics we devised,

and we conclude by presenting in section 5 our firs t applications, the Olympics InfoLine and the

HomeBanking system, and by pointing out future rese arch directions in section 6.

2. Architecture of the Spoken Language Processing System

The general architecture of the spoken language pro cessing system can be divided into two main

components, the Utterance Processing component, whi ch processes each utterance from the caller,

and the Dialogue Processing component, which puts t hat utterance in the context of the conversation

and determines the appropriate response. Figure 1 shows the general architecture of the spoken

language processing system, abstracting from the sp ecifics of the speech recognition and telephony

components. Rectangular boxes represent software co mponents, file icons represent the data

structures to be provided by the application develo pers, and ellipses represent the data structures

created and manipulated by the system during proces sing. We omit from this diagram the

representation of the tools and utilities.

Figure 1: Architecture of Sylan, the Syrinx Spoken Language System.

As can be seen from Figure 1, the Utterance Process ing component uses a pipe-line

architecture, with the output of the Language Model feeding into the Syntactic Analyser and the

output of the Syntactic Analyser feeding into the S emantic Resolver. The architecture of the Dialogue

Processing component is centred around the Dialogue Flow Controller which directs the flow of

information among the Logic Engine, the Database In terface and the Generator.

 When a call comes in, the SpeechMaster telephony component initiates a session and hands

over control to the Dialogue Flow Controller (DFC), which then sends the first prompt to be played

and initiates recognition. The dialogue for a spec ific application is specified in a dialogue script.

Typically, the system starts the call with a greeti ng and a message prompting the caller to ask a

question or formulate a request for a transaction, as in (1), which starts the dialogue for an Olympic s

InfoLine session.

(1) S: This is the Syrinx Olympics InfoLine! I hav e information about the Olympics schedule.

What would you like to know?

When the caller answers the prompt, the input is pr ocessed initially by the Speech Recogniser, which

filters out irrelevant background noise from the ca ller’s utterance and produces an N-Best list of

results. The Language Model then rescores and sele cts one or more results from the N-best list. 2 In

the current implementation, the Language Model is b ased on a backoff trigram model (Jelinek,

1997), incorporating both acoustic and linguistic s cores.

The result chosen by the Language Model is passed o n to the Syntactic Analyser as a list of

words linked to their lexical entries in the Lexico n. Because our emphasis is on robust processing of

the input, and not on producing a complete parse of the input, we have adopted a chunk parser

approach (Abney, 1991; 1995) and the Analyser will ignore words or phrases in the input which do

not contribute to the semantic meaning to be used b y the application. The output of the Syntactic

Analyser is passed on to the Semantic Resolver for further processing. At present, the Semantic

Resolver mainly deals with the processing of date a nd time phrases, and it resolves these

expressions as complete date and time objects.

When the caller’s response to this first prompt has been processed by the Utterance

Processing component, the output to the Dialogue Pr ocessing component is a Meaning

Representation (MR), which consists of a structured list of attribute -value (AV) pairs, the minimal

information elements in feature-based formalisms. 3 For instance, if the caller answers the initial

prompt given in (1) with the information request in (2),4 the resulting MR will be as shown in (3),

where each attribute-value pair represents one piec e of information extracted from the input.

(2) U: What time is the women’s butterfly?

(3) utterance-type = query

target = time

sub-discipline = butterfly

gender = womens

Not only is the MR the interface between the Utterance Processing and the Dialogue Processing

components, it also serves as the general data stru cture holding the contents of the utterance during

processing. The MR resulting from processing an utterance may be used directly by the DFC to

construct a query to the customer database through the Database Interface. For instance, from (3),

the SQL query in (4) will be derived automatically.

(4) SELECT TIME FROM SWIMMING WHERE SUBDISCIPLINE = BUTTERFLY

AND GENDER = WOMENS

In other instances, the MR resulting from processing an utterance can be used by the Logic Engine

to modify the MR that had been stored by the DFC from the previous utterance. For instance, if the

system asked the caller to further specify the “wom en’s butterfly” with the request in (5), and the

caller gave (6) as an answer, the new MR would be as in (7).

(5) S: There are many answers about women’s butterf ly, please specify a heat

(6) U: The finals.

(7) utterance-type = query

target = time

sub-discipline = butterfly

gender = womens

heats = finals

As in most attribute-value based systems, where a f eature matrix can be specified to a greater or

lesser extent, the MR is an under-specified structure: attribute-value p airs are not required to be

present, and values may be left unspecified. The MR can be modified and updated throughout the

dialogue. The Dialogue Processing component may re place an old MR with a new MR, modify the

old MR with the new MR, or decide to keep the old MR and ignore the new one.

Whatever operations may have been performed on the MR, the output of the Dialogue

Processing component consists of two elements:

a) the prompt to be played to the caller via the Sp eech-Out component; this could be a pre-

recorded file, a text string sent to a Text-to-Spee ch (TTS) system, or a combination of audio and

TTS, with appropriate mark-up;

b) a message to the Utterance Processing component, setting up the appropriate parameters

for the next utterance, including pointers to the g rammar and vocabulary to be used at the next

dialogue state.

If the DFC encounters problems it cannot solve, the call is passed to a human operator via

Call Control. When the call either is successfully completed or interrupted, control is regained by t he

telephony component.

3. Creating the application

In section 2, we described the general architecture of the spoken language system from the

point of view of processing, showing what happens w hen a call is being processed. In this section,

we present Sylan from the point of view of the application develope r, and in particular the data

structures that need to be specified for each appli cation, and we briefly describe the tools and utili ties

used by the application developer to specify those data structures.

From the point of view of the application developer , the process starts with designing the

dialogue and defining the attribute-value pairs tha t are relevant for the application. The first task is

usually accomplished from the specifications and re quirements provided by the customer, while the

second task requires specific information from the customer’s database and from the business rules

that have been defined for the application. As see n in section 2, the architecture of the Syrinx

spoken language system is domain-independent, and Sylan is designed to be easily adaptable to

different domains for different applications. A sp oken language application can be more or less

sophisticated, depending on how large the domain of the application (and the associated lexicon) is,

and how free the dialogue is allowed to be. Howeve r, the general architecture remains the same,

whether for tourist information, bill payment, info rmation about a specific event, travel reservation,

etc.

To develop an application, developers need to:

a) design the dialogue script;

b) specify the prompt templates;

c) determine the attribute-value pairs for the MR, from the customer database and a corpus

analysis;

d) enter the words in the Lexicon as lexical entrie s, with the Part-of-Speech (POS) tag for analysis

(see section 3.3. and 3.4), and the semantic values if they are used to build the MR; and

e) specify the grammars for the input expected at t he different dialogue states.

The dialogue script is designed from the specific a pplication requirements (Balentine and

Morgan, 1999). The lexicon and the grammars are bu ilt from an analysis of the customer’s corpus

(Young and Bloothooft, 1997). This corpus analysis , in conjunction with the requirements for the

application tasks, will contribute to the specifica tion of the attribute-value pairs for the MR. Other

attribute-value pairs are derived from an analysis of the customer’s database. In turn, this analysis

also contributes to the task specifications (Rudnic ky et al., 1999). From the corpus, the developer

can also train application-specific language models .

The creation, development and maintenance of these data structures necessitate their own

tools, and we have developed a number of tools and utilities for our in-house application developers.

These utilities can also be made available to custo mers so they can modify their application.

Modifications to the lexicon, the grammars, the dia logue script, and the prompts can be made

without having to recompile the application, an imp ortant consideration when the application is

already running at the customer’s site.

3.1 Dialogue Script

The Dialogue Flow Controller manages the dialogue v ia a dialogue script, which embodies a state

machine describing the possible paths through a cal l and the actions to be taken at each dialogue

state. Current dialogue scripts handle ‘protocol’ i nteractions such as greetings, closures,

interruptions, error handling, etc., as well as the actual question or transaction request from the

caller. The dialogue scripts are developed through a GUI, and the scripts which are created are then

interpreted at run-time by the Dialogue Flow Contro ller.

According to the specific dialogue script for an ap plication, the Dialogue Flow Controller can

query the customer or domain database to retrieve t he answers to the caller’s request. The

database interface (DBI) is generic so the system c an be adapted easily to different domains. The

database itself is organised into concepts which ar e used by the Knowledge Base Mapping Tools to

map the database elements in the customer database to lexical entries in the Lexicon.

The Dialogue Flow Controller may call on the Logic Engine to return an answer from the

results returned by the database. The Logic Engine may in turn request further information to narrow

the caller’s request, until enough information has been gathered to provide an answer. Other

functions of the Logic Engine are: 1) to sort and/o r aggregate multiple answers from the database for

use by the Generator in producing responses; 2) to narrow under-specified queries; and 3) to create

a new MR from an incomplete one by using attribute-value pa irs from the previous query.

Finally, the Generator produces the system’s respon ses. The responses are partly specified

by the developer in templates that are called from the dialogue script and insta ntiated during

processing.

3.2 Prompt templates

The Generator generates the output prompts from templates, while the choice of template is

specified in the script. This approach separates th e work of the dialogue writer into two parts:

1) describe the logic in the dialog script: decide what to say;

2) specify response templates: decide how to say it .5

The calls to the templates are parameterised, to pe rmit the use of predefined functions that can filte r

answers from the Database or reorganise the present ation of answers. These functions make use of

attribute-value pairs in the Meaning Representation being processed. Example (10) would cause a

call to the function “makeProbe ”, shown in a slightly simplified form in (11). 6 The function

“makeProbe ” provides: a) the template ID (“specify”), b) the current MR (“MRin”) from which the

variable “%$given” will be extracted, and c) the va riable “%$discriminator”. The template “specify”,

given in (12), produces the response shown in (13).

(10) U: When are the 100m swimming finals?

(11) makeProbe(“specify”, MRin, DBresult, ”Gender”)

(12) $template specify

“There are many answers about %$given, please speci fy a

%$discriminator”

 $end

(13) S: "There are many answers about 100 meters sw imming finals, please specify a gender"

The prompts themselves may be pre-recorded, and the individual elements will then be

concatenated by the SpeechOut component. Alternati vely, an integrated off-the-shelf Text-To-

Speech component provides a larger range of possibi lities in the responses, allowing the dialogue

designer greater flexibility to modify the prompts.

3.3 Lexicon

The Lexicon contains all the lexical items needed f or an application. Several types of information ar e

associated with each lexical entry. Of the fields shown in Table 1, (a) and (b) phonemic transcription

are currently used by Sycon, while (a) orthographic spelling and (c-f) domain, POS, Semantic Type,

and Semantic Value are used by Sylan. Syntactic Type, (g), has not been used in any of the

applications developed so far, but is available for further specification (e.g., indication of the val ency

of predicates). Domain, (c), is used to distinguish between lexical item s that have to be interpreted

differently in different applications (e.g. “butter fly” and “heat” in the sports domain).

Type of information obligatory/optional

a. orthographic spelling obligatory for recognitio n

b. phonemic transcription obligatory for recognitio n

c. Domain optional (useful for reuse of lexicons)

d. POS (part of speech) obligatory for analysis

e. Semantic Type optional (useful for building AV pairs)

f. Semantic Value optional (useful for building mo re fine-grained AV)

g. Syntactic Type optional (useful for more detail ed analysis)

Table 1: Types of information in lexical entries

The Vocabulary Development Tool provides an interface and utilities allowing both

developers and customers to maintain the lexical da tabase, add or modify lexical entries, extract

sub-dictionaries for specific grammars, and compile the dictionaries for an application.

3.4 Grammars

As mentioned above, our emphasis is on robust proce ssing of the input, and the Analyser processes

phrasal chunks. The output data structure for thes e phrasal chunks consists of attribute-value (AV)

pairs specifying the semantic meaning of the phrase s that have been recognised and processed, i.e.,

the MR (see section 2). The phrasal chunks to be process ed are specified in the analysis grammars

developed for each application.

Analysis grammar rules consist of a LHS (left-hand side), which is a non-terminal element

(i.e., a phrase), and a RHS (right-hand side), whic h is a list of POS (Part-Of-Speech) terminals and/o r

phrasal non-terminals. The POS labels are arbitrar y, and those for content words will, by and large,

correspond to their semantic interpretation for a g iven application, e.g., “DISCIPLINE” for the sports

in the Olympics InfoLine system. The POS for gramm atical and closed class items have been taken

from the widely used University of Pennsylvania Tre ebank POS tagset (Marcus et al., 1993). 7 Some

Penn Treebank POS labels, used in the rules (15-18) below, are shown in (14).

(14) CD = cardinal number (1, 2…)

WRB = question-word (where, when, how, who, what…)

TUNIT = time unit (e.g., day, month…)

NNS = plural noun (would be instantiated to the se mantic labels for a particular application)

The body of a rule consists of conditions, used to check the semantic type and/or value of RHS

elements, and actions, which create the attribute-v alue pairs to be stored in the MR. The variable

“x.t” refers to the semantic type of the RHS elemen t “x”, while the variable “x.v” refers to its seman tic

value.

Phrasal chunks can be full or partial Noun Phrases (NP) for the entities and concepts from

the application domain, for instance (15) and (16) specify measure phrases relevant for the sport

domain.

(15) # for phrases such as “1 kilometre, 1500 metre s”

DIST -> CD UNIT

if 2.v eq “m” or 2.v eq “km”

then distance = 1.v + 2.v

 end.

(16) # for phrases such as “1 kg, 97 kg”

WEIGHT -> CD UNIT

 if 2.v eq “kg”

 then weight = 1.v + 2.v

 end.

Phrasal chunks can also consist of general phrases for questions, or dates and time phrases, which

are reusable across applications, as in (17) or (18).8

(17) # for phrases such as “how many times”

WHP -> WRB MANY NNS

then utterance-type = QUERY; target = number; entit y = 3.v

end.

(18) # for dates in the format “4th of July”

DATE -> ORDINAL IN TUNIT

 if 3.t eq MONTH

 then create DATE; dayofmonth = 1.v; month = 3.v

 end.

In the first few iterations of the project, analysi s grammars were developed separately from the

grammars used by the recogniser. This made sense t o the extent that a recognition grammar

specifies the string of words to be recognised, whi le an analysis grammar extracts meaningful

chunks from the input string. However, this was no t optimal for the application developer who had to

keep track of two grammars and make sure they remai ned synchronised in case of modifications.

We now specify both the input string (the “recognit ion grammar”) and the phrasal chunks with their

associated attribute-value pairs (the “analysis” gr ammar) in the same “meta-grammar”. Meta-

grammars are written in the Java grammar script for mat, which is a convenient format for the

integration of the notation used for phrasal chunks such as those shown in examples (15-18) and the

BNF notation used for recognition grammars. 9 The meta-grammars are then directly compiled into

the BNF file format used by the recogniser and the Syrinx proprietary format used by the Analyser. A

simple example of a meta-grammar rule is given in (19.a), with the corresponding BNF recognition

rule in (19.b) and the analysis rule in (19.c). No te that (19.b/c) are automatically produced, and th e

grammar writer only specifies (19.a).

(19.a) meta-grammar rule:

<how_much> {HOW_MUCH}=

how much {utterance-type = Query-Type;

Query-Type = Information;

Information = Balance}

(19.b) recognition rule:

$how_much =

how much;

(19.c) analysis rule:

Level 1

HOW_MUCH -> WRB MUCH

then utterance-type = Query-Type;

Query-Type = Information;

Information = Balance

end.

There is currently no morphological processing perf ormed on the input, as this has not been

found to be needed at this stage for current applic ations. For English, listing singular/plural nomin al

forms and the different verbal forms as separate l exical entries has been sufficient. In fact, it is an

open question whether including a morphological pro cessing stage would lead to an increase in

either efficiency or accuracy. In most cases, morp hological alternants will result in the same

information, e.g., women/women’s will both give “GENDER = WOMEN”. Moreover, morphological

alternations are often realised as suffixes, which are often difficult to recognise reliably in the fi rst

place. Even for languages other than English, wher e morphological information may be more easily

recognised acoustically, it is not necessarily the case that an extra level of analysis would be

warranted. We are leaving this as an area for furt her research.

3.5 Database Interface

The first prototype for Sylan was developed for the “Olympics InfoLine”, a demon stration

system for information about the schedule of the Sy dney 2000 Olympic Games. Another application

deployed by Syrinx is a financial trade system, “Vo iceBroker”, for the Commonwealth Bank, one of

the major Australian banks. While the “Olympics In foLine” application answers queries about time

and location of Olympic events from the schedule pu blished on the Web, the “VoiceBroker”

application allows callers to obtain current stock prices and to trade (buy or sell) stocks on the

Australian Stock Market (Berry and Estival, 2000). Thus, part of the challenge for “VoiceBroker” is

the link to a dynamic database. We thus developed a generic database interface (DBI) allowing easy

access to any customer database. One of the lesson s learned during the development of the

“Olympics InfoLine” was that the complexity of the domain database and the complexity of the

domain itself contribute significantly to the diffi culty of application development, and we are

developing tools for the automatic extraction and m apping of database concepts to lexical

information.

3.6 Other features and utilities

Although the spoken language processing component o f the system is compatible with other

speech recognition systems, we assume that the spee ch recogniser to be used is speaker

independent and that it accepts continuous speech. In addition to these characteristics, the Syrinx

Speech Recogniser also provides a barge-through fac ility to allow callers to interrupt system prompts

with new queries or responses, and we take advantag e of the barge-through facility in dialogue

design. The Syrinx Speech Recogniser also gives as output an N-Best result list with confidence

scoring, which is used by the Language Model in cal culating the overall score (see section 2).

For applications that require it, in particular, fi nancial applications, a Speaker Verification

facility has been integrated into the overall syste m architecture, allowing confirmation of the caller s’

identity before they are permitted to continue.

4. Development methodology and Evaluation

The architecture of the Syrinx spoken language syst em is modular, and all components have

been designed following Object Oriented methodology. The system is implemented in C++ to allow

for easy deployment across different platforms and operating environments (including Windows NT

and UNIX), internet and telephony networks, and Aut omatic Call Distribution (ACD) and Interactive

Voice Response (IVR) platforms. It is scalable, wi th installations ranging from a single PC with

several ports to a clustered environment with sever al hundred ports.

Evaluation was conducted during development using t he EAGLES methodology (EAGLES,

1995). We instantiated the EAGLES “7-step recipe” which lays out the “7 major steps necessary to

carry out a successful evaluation of language techn ology systems or components” (King, 1999). One

of these steps is the identification of evaluation criteria, another is of the identification of metri cs for

those criteria. To evaluate spoken dialogue system s beyond mere word recognition accuracy, we

decided to focus on the six criteria or features gi ven in (20):

(20) 1. Speed: Is the spoken language system capabl e of answering queries in real-time?

2. Access: How many people can call at the same tim e?

3. Accuracy: of recognition and analysis of input. The accuracy of the spoken language

system depends in the first place on the accuracy o f the front-end acoustic recogniser.

4. Correctness: Is the information provided to the caller correct and complete? Is it the

information the caller was asking for?

5. Ease of use: Does the user need to be trained in using the system? How easy is it to get

an answer to a query?

6. Robustness: How does the system handle system er rors and how does it recover?

These 6 criteria are further detailed as shown in T able 2.

Speed
The whole system must be quicker than the current p rocedure using touch-tone or IVR with word-by-
word speech recognition. There could be a trade-of f, if the improvement in ease of use and the
flexibility of the dialogue consistently allows cal lers to get more information or perform more operat ions
than with IVR. However, the system must run in rea l-time, where real-time is taken to mean that “its
latency (time after utterance is complete) is indep endent of utterance duration” (Glass et al., 1999).
Access
The system must be able to handle several calls in parallel.
Accuracy :
The system must recognise all the words in the inpu t that are relevant to the query, group them
correctly, and formulate the appropriate SQL query. Accuracy must be divided into
(a) accuracy of recognition: not part of the NLP sy stem, but relevant for evaluation of the applicatio n;
and
(b) accuracy of analysis.
Correctness of information
The information returned to the caller must be the complete correct information retrieved from the
database, and must be the information relevant to t he query.
Ease
The system must be at least easier to use than IVR. The dialogue must be ”natural”.
Ease of use may be divided into main aspects:
• the results must be presented in a form usable by t he caller:
 - quality of speech output (TTS or recording)
 - structure of response: presentation of each a nswer and presentation of several answers
• interaction with the caller:

- must allow caller to modify the query or make anoth er query
- must allow caller to adjust the query, e.g., specif y more information to narrow the query
- must handle recognition and understanding problems in a “user-friendly” manner; standard

error handling: how many times do you ask the calle r to repeat or rephrase a query before

handing the call to a human operator
Robustness: Monitor unrecognisable queries and system errors
Table 2: Criteria for the evaluation of a spoken la nguage dialogue system

The complete set of measures for these criteria is listed in Appendix A. For each of the

criteria, these measures provide three levels of ev aluation: good, satisfactory and unsatisfactory.

Results during development, and for the prototypes we are currently demonstrating, have been

mostly satisfactory. Recognition is, of course, ex pected to improve once the systems have been

operational and more training data have been collec ted.

5. Applications

 Two prototype applications with full dialogue scri pts, grammars, lexicons and database

interfaces were built and fully integrated in the SpeechMaster platform; they are currently available as

demonstration systems. While the Olympics InfoLine system has remained very much an in-house

research prototype, the HomeBanking system is now b eing developed into a commercial application.

The demonstration prototype can be used remotely ov er the public telephone to a server at Syrinx, or

as a self-contained system on a stand-alone machine , with its own telephone and PABX. 10

The Home Banking application allows callers to perf orm 3 types of operations:

§ Account Details, for various accounts (savings, che que, credit card).

§ Funds Transfer from, and into, any selected account .

§ Bill Payment (BPay), from selected account to vario us billers.

The application allows the caller to say what they want to do in a fairly unconstrained manner,

e.g., either giving all the information at once, or in different combinations. It confirms the transa ction

and asks for clarification, if necessary, and allow s the caller to perform any number of transactions

per call. There are a number of important issues co ncerning dialogue design (see Gorin, Ricardi and

Wright, 1997 inter alia) that are outside the scope of this paper, but which must be addressed during

commercial application development (see Berry and E stival, 2000).

From the customer point of view, SpeechMaster allows for a better use of human resources,

as staff at the customer site can focus on providin g better service for more complex transactions,

rather than handling routine and mundane caller enq uiries. Automation permits full-time operation

for a call centre, with prompt answering of all inc oming calls 24 hours a day, and allows for automati c

and efficient peak load management.

6. Further research

While the applications developed have so far been i n the English language, we are

investigating multi-linguality issues, and are look ing at the development of speech and language

components for other languages, in particular Canto nese, as well as other European languages.

 Another research direction concerns parallel proce ssing. We are first looking at allowing

parallel processing at the Utterance Processing lev el, allowing several of the N-best results to get

analysed before a choice is made between the result ing MRs. Next, we can allow several MRs to be

processed, with the best fit with the current dialo gue chosen by the Dialogue Processing component.

We are also pursuing the use of statistical grammar s for analysis and, eventually, statistical dialogu e

processing.

In a separate research project, we are investigatin g the use of prosody to enhance automatic

speech recognition and understanding of telephone d ialogues, in the first instance by assisting in the

determination of phrase boundaries and, in the long er term, to assist in dialogue processing. 11 In

the mean time, we have been studying other ways in which linguistic information can be used to

improve recognition by rescoring recognition result s. This linguistic information includes word- and

class-based language models (Samuelsson and Reichl, 1999), check digit sums, semantic

constraints imposed by the Dialogue Flow Controller (Hagen and Popowich, 2000), knowledge of

language repair strategies and rate-of-speech model ling. Under speech repair, we have been

particularly interested in investigating disfluencies (e.g., fillers, hesitations, repetitions, correc tions,

editing terms) in a corpus of spontaneous telephone transactions in order to build models to improve

automatic speech recognition and understanding.

Finally, we have been experimenting with ways to au tomate the grammar creation process,

through automatic grammar induction from a corpus o f utterances. This automatic grammar

induction process eventually will become part of a set of automatic data creation utilities, to help t he

application developer easily create and manage the different types of data (e.g., lexical information,

language modelling, attribute-value pairs (from bot h corpus and database) and grammars) that are

needed for an application.

On another front, we are moving towards a VoiceXML implementation of the Dialogue

Processing component.12

References

Abney, S. (1991). Parsing by chunks. in R. Berwick , S. Abney and C. Tenny, Eds., Principle-Based

Parsing. pp. 257-278. Dordrecht: Kluwer Academic Publishers.

Abney, S. (1995). Chunks and dependencies: Bringing processing evidence to bear on syntax. in J.

Cole, G.M. Green and J.L. Morgan, Eds., Linguistics and Computation. pp. 145-164.

Stanford: CSLI Publications.

Balentine, B. and Morgan, D.P. (1999). How to build a speech recognition application: A st yle guide

for telephony dialogues. San Ramon: Enterprise Integration Group Inc.

Bernsen, N.O., Dybkjaer, H. and Dybkjaer, L. (1998) . Designing interactive speech systems: from

first ideas to user testing . Berlin: Springer-Verlag.

Berry, L. and Estival, D. (2000). Moving on from IV R. Proceedings of OZCHI 2000. pp. 166-168.

Sydney: HSIG.

EAGLES (1995). Evaluation of natural language processing systems. EAGLES Document EAG-

EWG-PR.2. Geneva: EAGLES.

Glass, J.R. (1999). Challenges for Spoken Dialogue Systems. Proceedings of ICASSP ’99.

Phoenix, AZ: IEEE.

Glass, J.R., Hazen, T.J., and Hetherington, I.L. (1 999). Real-time telephone-based speech

recognition in the Jupiter domain. Proceedings of ICASSP ’99. pp.61-64. Phoenix, AZ: IEEE.

Gorin, A.L., Riccardi, G. and Wright, J.H. (1997). How may I help you? Speech Communication,

23:113-127.

Hagen, E. and Popowich, F. (2000). Flexible Speech Act Based Dialogue Management. Proceedings of

First SIGdial Workshop on Discourse and Dialogue. ACL 2000. pp. 131-140. Hong Kong: ACL.

Jelinek, F. (1997). Statistical methods for speech recognition. Cambridge: MIT Press.

Johnson, M. (1988). Attribute-Value logic and the theory of grammar. Stanford: CSLI Publications.

King, M. (1999). The 7-step recipe. EAGLES Evaluation Working Group. Geneva: EAGLES .

http://issco-www.unige.ch/projects/eagles/ewg99/7steps.html

Reiter, E. and Dale, R. (2000). Building natural language generation systems. Studies in Natural

Language Processing. Cambridge: Cambridge Universi ty Press.

Rudnicky, A.I., Thayer E., Constantinides P., Tchou C., Shern R., Lenzo K., Xu W. and Oh A. (1999).

Creating Natural Dialogs in the Carnegie Mellon Com municator System. Proceedings of

Eurospeech ’99. vol.4, pp. 1531-1534. Budapest: Eurospeech.

Samuelsson, C. and Reichl, W. (1999). A class-based language model for large-vocabulary speech

recognition extracted from part-of-speech statistics. Proceedings of ICASSP ’99, pp. 537-

540. Phoenix, AZ: IEEE.

Marcus, M.P., Santorini, B. and Marcinkiewicz, M.A. (1993). Building a Large Annotated Corpus of

English: The Penn Treebank. Computational Linguist ics, 19:2, pp. 313-330.

Young, S. and Bloothooft, G., Eds. (1997). Corpus-based methods in Language and Speech

Processing. Boston: Kluwer Academic Publishers.

Appendix A: Criteria for the evaluation of a spok en language system

Speed: response time after utterance is complete

good:

satisfactory:

unsatisfactory:

< 1 second

< 5 seconds

 ≥ 5 seconds

Access : number of calls which can be handled at the same time

good:

satisfactory:

unsatisfactory:

10 or more users

> 5 users

< 5 users

Accuracy

a) accuracy of recognition is not part of the NLP system, but is relevant in evaluating the system: an

NLP system must be able to handle bad recognition.

good: - system recognises all utterances; all words in lexi con are recognised

- system accepts interruptions and makes corrections (i.e., allows barge-in and

adds new info to MR)

- system allows pauses in the input and still recognises whole utterances

satisfactory:

- when words are not recognised, or query cannot be c onstructed, system asks

caller to repeat or clarify, then hands call to ope rator if query is still not

recognised

- system handles pauses as marking utterance boundari es, but can add the new

information to the utterance being recognised

unsatisfactory:

- words in the lexicon are not recognised

- system doesn’t recognise or mis-recognises some w ords in the input, but

- keeps asking caller to repeat (bad “standard error handling”),

- doesn’t hand call to operator,

- doesn’t accept corrections from the caller,

- doesn’t handle barge-in

b) accuracy of analysis:

good:

- all words important to the query are in the lexicon

- all relevant and meaningful utterances are turned i nto MRs and queries

- rules in the grammar apply to create phrases

- correct MR is built

satisfactory:

- system handles short utterances with one query, but doesn’t handle long,

complex or irrelevant utterances: system behaves as if recognition had failed

unsatisfactory:

- system doesn’t handle long, complex or irrelevant u tterances, and behaviour is

unsatisfactory (see accuracy of recognition above)

- system recognises relevant words in the utterance, but doesn’t construct the

appropriate query: either the grammar rules do not exist, or they are not applied,

and the MR is not built.

Correctness of information : Check result of SQL query with information from Database

good:

- information is complete and accurate

- handles questions about time and/or location

- if information is not available, system hands call to an operator

satisfactory:

- information is accurate but maybe incomplete (e.g., time but no location)

- if information is not available, system says so

unsatisfactory:

- information is inaccurate

- can’t give an answer for only time or location or f or both time and location

- information is not available, and system doesn’t sa y so, but gives wrong

information or keeps asking for another query.

Ease: Compare with touch-tone, or IVR with word-by-word systems.

good:

- speech output is clear and natural-sounding

- all the information for one answer is presented cle arly

- when several answers are found, the system asks if the caller wants to hear all

of them and, if not, tells the caller how to narrow the query

- if the caller interrupts and gives more information , the system first tries to

narrow the current query; if not possible, then bui lds another query

- if the caller is misunderstood 3 times, the call is handed to a human operator

satisfactory:

- speech output is not very natural, but intelligible

- when several answers are to be given, they are grou ped for presentation

- if the caller interrupts, the information is used t o start another query

unsatisfactory:

- speech output is not intelligible, or too artificia l to be acceptable

- when several answers are found, the caller cannot n arrow the query, or

navigate through the answers

- if the caller interrupts, the information is ignore d

- when the caller is misunderstood, the system asks f or query to be repeated.

Robustness: Monitor unrecognisable queries and system errors

good:

- unrecognisable queries: caller is asked to repeat

- if the caller is misunderstood 3 times, the call is handed to a human operator

- in case of system break-down, the call is handed to a human operator

satisfactory:

- unrecognisable queries: see “accuracy of recognitio n, satisfactory behaviour”

- system break-down: message to caller before hanging up.

unsatisfactory: - unrecognisable queries: see “accuracy of recognitio n, unsatisfactory behaviour”

- system break-down: no warning or message to caller.

Endnotes

1 The Natural Language Processing Project (1998-2000) was a Research & Development project at

Syrinx Speech Systems, partly funded by a DIST R&D Start Grant (STG00217). I gratefully

acknowledge here the contribution of all the member s of the NLP group at Syrinx since the beginning

of the NLP project. Thanks in particular to Hugo De Vries, Ben Hutchinson and Cécile Pereira, who

gave me valuable comments on earlier drafts of this paper.
2 The actual boundary between the Speech Recogniser and the Utterance Processing component is

to some extent arbitrary: on the one hand, the Lang uage Model could be incorporated into the

Speech Recogniser, so the Utterance Processing comp onent would take as input the disambiguated

result; on the other hand, the Language Model takes into consideration linguistic information which

is, strictly speaking, not used by the Speech Recog niser. Moreover, keeping the Language Model

separate from the Speech Recogniser allows us to le ave open the option of keeping several of the

outputs alive and to process them in parallel until more information (whether syntactic, semantic, or

even from the dialogue) allows us to disambiguate b etween them.
3 Attribute-value pairs correspond to what Nuance ca lls “key-value” pairs. The term “attribute-value”

is much more widely used in Language Processing and we use it to indicate that the structure which

is being built (the MR) can, if necessary, be more complex and allow for the embedding of attribute-

value pairs in a feature matrix (Johnson, 1988). T he values themselves are not restricted to strings

or integers, but can be complex objects, such as da tes, times, or money amounts. The MR itself is

an instance of a feature matrix.
4 We follow the convention of prefixing system promp ts with “S” and user’s utterances with “U”.
5 These two tasks correspond to what has been called “microplanning” and “surface realisation”, and

the dialogue script itself can be seen as an instan ce of “macroplanning” (Reiter and Dale, 2000).
6 In fact, in this example, another function “getDis criminator” could have been used to retrieve

automatically the most likely discriminator from th e list of results from the database.
7 http://www.scs.leeds.ac.uk/amalgam/amalgam/amalghome.html
8 In fact, application developers do not have to kno w about rule (15), as complete grammars for

dates and times have already been developed and are available for inclusion in application

grammars.
9 The Syrinx recogniser grammars are in the familiar BNF (Backus-Naur Form) format.
10 The first set-up was used in November 2000, when O ptus made a demonstration of Home Banking

system to the ANZ Bank, the second set-up was used at the RIAO’2000 conference in Paris (April

2000) and at the OZCHI’2000 conference in Sydney (D ecember 2000).
11 This is a “Strategic Partnership with Industry - R esearch and Training” (SPIRT) project (ARC:

C00106858) with the University of Technology Sydne y and Macquarie University, titled “ Modelling

the melody of human speech: profiling intonation fo r automated telephone systems".
12 http://www.voicexml.org/

